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Abstract10

Our study utilizes global reanalysis of near-surface daily air temperature data, spanning from 1949 to11

2019, to construct climate networks. By employing community detection for each year, we reveal the12

evolving community structure of the climate network within the context of global warming. Our13

findings indicate significant changes in measures such as the network modularity, the number of14

communities, and the average community size over the past 30 years. Notably, the community structure15

of the climate network undergoes a discernible transition around 1982. We attribute this transition to16

the substantial increase in isolated nodes after 1982, primarily concentrated in equatorial ocean regions.17

Additionally, we demonstrate that nodes experiencing amplified isolation tend to diminish connectivity18

with other nodes globally, particularly those within the same oceanic basin, while showing a significant19

strengthening of connections with the Eurasian and North African continents. We propose that the20

mechanism behind the amplified isolation in the climate network can be understood through weakened21
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ocean current interactions under global warming.22

Key words：Climate network, community detection, modularity, isolated nodes.23

1 Introduction24

Since the 20th century, with the continuous increase of greenhouse gas emissions, the global25

climate system is undergoing warming[1-3]. Climate warming leads to surge in various extreme events,26

including extreme heat waves, ocean acidification, glaciers melting, drought, floods and hurricanes,27

etc. [4]. In addition, it has a serious impact on global air quality, food production, energy consumption,28

transportation, water resources, economic and ecosystems, etc. [5-8]. The elevation in global29

temperatures has led to substantial alterations in the distribution of heat on Earth, subsequently30

imparting far-reaching impacts on atmospheric circulation and ocean circulation patterns[9,10]. For31

example, in the context of global warming, research by Hu et al. (2021) found that the El32

Niño-Southern Oscillation (ENSO) events with the same amplitude can lead to larger anomalies in the33

tropospheric water vapor, consequently resulting in more significant global atmospheric circulation,34

temperature, and precipitation anomalies[11]; Ditlevsen et al. (2023) discovered that with the increasing35

concentration of greenhouse gases, the Atlantic Meridional Overturning Circulation (AMOC) may36

collapse around the middle of this century. This will have severe impacts on the climate in the North37

Atlantic region[12]; Garner et al. (2023) found that due to the warming of the planet and oceans, tropical38

cyclones in the Atlantic are gradually intensifying, and the number of major hurricanes is also on the39

rise[13]. This intricate interaction has exacerbated the diversity and uncertainty of the climate40

phenomenon, and has become a profound challenge facing contemporary society.41

The climate system is highly complex, characterized by diversity, multiscale dynamics, and42

nonlinearity. Unveiling the internal structure of the climate system necessitates the application of sound43
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research methods. Complex network analysis emerges as a potent tool for investigating the dynamics44

and structural characteristics of complex systems. Over the past several years, complex network45

methodologies have gained widespread application in the realm of climate science. By using various46

climate factors (e.g., precipitation, temperature, wind, etc.), a climate network can be constructed. In47

the climate network, variables such as temperature or geographical location are used as network nodes,48

and links are established based on correlations and covariances among climate variables. Through49

studying the interactions and relationships between nodes, the topological structure of the climate50

system can be revealed, thereby deepening our comprehension of climate change and climatic51

phenomena at different spatiotemporal scales. Donges et al. employ linear Pearson correlation52

coefficients or nonlinear mutual information as measures of dynamic similarity between53

regions[14].They systematically compare climate networks constructed from the same global climate54

dataset at local, mesoscale, and global topological scales. Boers et al. used the complex network55

method to reveal the teleconnection model of global extreme precipitation[15]. Gozolchiani et al.56

constructed and analyzed a climate network representing interdependent structures of climate across57

different geographical regions, uncovering its unique response to El Niño events [16]. Methods of58

climate network analysis have also been employed to identify the weakening of tropical circulation in59

recent years[17,18] and the correlation between atmospheric activities and pollutants[19]. Furthermore,60

complex network methods have been utilized to predict El Niño events[20-22]. In summary, complex61

network analysis is an effective approach for exploring the physical and statistical laws of the Earth's62

system[23].63

A network is a collection of multiple vertices connected by edges[24]. The network's topological64

structure can unveil important and novel characteristics of the system it represents[25-29]. An important65
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feature of network is community structure[30]. The community structure is an important feature that66

reflects the overall structural properties of complex networks. In-depth analysis of the community67

structure allows for a systematic understanding of the structural relationships and characteristics of68

complex networks. In a climate network, each community may represent a subsystem. Understanding69

the community structure can provide a deeper insight into the interrelationships between different70

components of the climate system. Communities can be associated with network functionality, as seen71

in the identification of genomic sets responsible for specific functions in metabolic72

networks[31].Currently, there are many researches on the internal dynamics mechanism of climate73

system based on community structure. For example, Tsonis et al. (2011)[32] constructed climate74

networks using observed climate variables and model simulations, and investigated their community75

structure. Agarwal et al. (2018)[33] identified communities using community detection algorithms to76

quantify the influence of individual rainfall stations within homogeneous regions. Some studies have77

identified novel dynamic mechanisms of climate systems through the characteristics of community78

structures in networks [34-37]. However, few studies have considered the effects of global warming on79

the community structure of climate networks. Therefore, the research aims to use network analysis and80

community detection to explore how global warming is altering the structure of the global temperature81

network, with the ultimate goal of advancing our understanding of climate change and informing82

strategies to address its impacts.83

Therefore, based on the near-surface temperature structure climate network, this paper studies the84

impact of global warming on climate network. Employing the Louvain community detection algorithm,85

it analyzes the evolution of network topology and reveals the underlying factors driving changes in the86

network structure. The main structure of this paper is as follows: Section 2 introduces the data and87
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methods; Section 3 discusses the evolution of climate network topology in the context of global88

warming; Section 4 summarizes the results.89

2 Data90

This study utilizes daily air temperature reanalysis data from the National Centers for91

Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) at a92

resolution of 2.5° × 2.5° , spanning the near-surface (sig995 level) temperatures from 1949 to 2019.93

The dataset comprises 10,512 grid points over the global. For simplification purposes, we strategically94

select 726 nodes (grid points) to construct the network and ensure uniform global coverage with same95

distance interval.96

3 Methods97

3.1 Constructing the climate network98

Climate networks are constructed based on the near-surface air temperature data for each year99

from 1949 to 2019, resulting in a total of 71 established climate networks. The time series of a node100

(denoted as � ) is detrended by subtracting the average seasonal cycle and dividing by the standard101

deviation of the cycle to obtain the temperature anomaly (denoted as ��
�(�)，where � is the index of102

year) [19]. To obtain the link strength between each pair of nodes � and � , we then calculate the103

time-lagged cross-correlation function[38]:104

��,�
� ( − �) =

��
�(�)��

�(�−�) − ��
�(�) ��

�(�−�)

(��
�(�)− ��

�(�) )2 ∙ (��
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where denotes the mean value, based on which � � = 1
365 �=1

365 � � − �� ; � represents time107

and the time lag is denoted as � ∈ [0,200].108

Therefore, the link strength between each pair of nodes in the network is denoted as follows:109

��,�
� =

���(��,�
� )−����(��,�

� )

���(��,�
� )

, (3)110

in this context, “���”,”����” and “���” refer to the maximum value, minimum value, mean, and111

standard deviation of the cross-correlation functions. The cross-correlation can be inflated due to the112

autocorrelation of points. The strength ��,�
� reflects the deviation and serves to eliminate the effect of113

autocorrelation, aiming for a more desirable outcome. To select meaningful links in the network and114

eliminate false associations, we retain the top 5% of links in the network such that a threshold of � =115

3.5 is applied to obtain an adjacency matrix � (when ��,�
� ≥ � , the element ��� = 1 , otherwise, the116

element ��� = 0).117

3.2 Community Detection118

Subsequently, the obtained sequence of climate networks underwent community detection using119

the Louvain community detection algorithm. The key steps of this method involve traversing each node120

in the network and attempting to relocate it to a neighboring node in a different community to optimize121

the modularity � . If moving a node to another community increases the modularity, the move is122

executed; otherwise, it remains unchanged. In other words, the process assesses whether the increment123

in modularity ∆� resulting from the move is positive, and this procedure is repeated until no further124

node movements are possible. Here is the formula for calculating modularity[27]:125

� = 1
2� �,� [��� − ����

2�
]�(�� , ��)� , (4)126

Where �� = � ���� and �� = � ���� are the sums of the weights of links connected to vertex � and127

vertex � (i.e., the number of links connected to node � and node �), �� represents the community to128

which node � belongs, �(�, �) equals 1 if � = � , otherwise 0, and � = 1
2 �� ���� . Modularity has129

become a metric for assessing the quality of community divisions, with high modularity indicating130

strong internal connections within a community and weaker connections with other communities.131
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4 Results132

In order to investigate the evolution of the network's topology in the context of global warming,133

we construct the network for each year from 1949 to 2019 and apply community detection to the134

network. In Figure 1(a), we show that the network modularity for the early years (1949-1981) is largely135

below the average level. While in the recent years (1982-2019), the network modularity remain136

consistently above the average level. There is a significant transition in the modularity around 1982.137

The number of communities and modularity exhibit similar evolutionary patterns as shown in Figure138

1(b). Although the trend in the change of the number of communities is not as pronounced as the trend139

in network modularity, it is still evident that the number of communities was mostly below the average140

level in the first 33 years, while in the recent 38 years, the majority of community numbers are above141

the average level (as shown in Figure 1(b)). The trend in the average community size exhibits the142

opposite pattern compared to modularity and the number of communities, but similarly experiences a143

noticeable transition around 1982. Figure 1(c) shows that before 1982, the average community size is144

mostly above the average level, while after 1982, the average community size is mostly below the145

average level. The evolution of network modularity, the number of communities, and the average146

community size all underwent a transition around 1982. A very strong El Niño event occurred between147

1982 and 1983. The event have a profound impact on the global climate and caused the global seawater148

temperature to increase [39].149
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150

Figure 1: Temporal evolution of (a) network modularity, (b) the number of communities and (c) the average151

size of communities from 1949 to 2019, illustrated by the green dashed line denoting the average level, and152

the red dashed line represents the transition around 1982. Scatter plot of (d) the network modularity, (e) the153

number of communities versus the number of isolated nodes during the period 1949-2019. (f) The154

probability distribution of community size for 1949-1981 and 1982-2019 respectively, where the starting dot155

represents the probability of the isolated node.156

After 1982, the number of communities increases, while their average size decreases. We find that157

this is related to the number of isolated nodes (with the community size 1). We observe the relationship158

between modularity and the number of isolated nodes and find a strong positive correlation with a159

correlation coefficient of 0.674 (as shown in Figure 1(d)). The high correlation with network160
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modularity indicates that the trend in the number of isolated nodes is consistent with changes in the161

network's topological structure. Furthermore, from Figure 1(e), we observe that the correlation between162

the number of isolated nodes and the number of communities reaches 0.929. The high correlation with163

the number of communities suggests that the overall increase in the number of communities is driven164

by the increase in isolated nodes. To further strengthen the verification of whether the changes in the165

number of communities, network modularity, and average community size after 1982 are related to the166

number of isolated nodes. We examine the probability distribution of community sizes in 1949-1981167

and 1982-2019 (as shown in Figure 1(f)). There are two peaks for the isolated node and the community168

with size around 60 in the probability distribution of community size for both 1949-1981 and169

1982-2019. In 1949-1981, the proportion of isolated nodes in the overall community is not prominent.170

However, in 1982-2019, the proportion of isolated nodes has dramatically increased and has become171

the largest component in the community distribution. Therefore, the transition in modularity, the172

number of communities, and average community size in 1982 can be attributed to the substantial173

increase in the number of isolated nodes.174

175

176

Figure 2: Occurrence probability maps of isolated nodes for (a) 1949-1981, and (b) 1982-2019.177

178

Next, we will further study the relationship between changes in climate network structure and179

isolated nodes. The occurrence probability maps of isolated nodes for 1949-1981 and 1982-2019 are180
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shown in Figure 2. From 1949 to 1981, few isolated nodes are mainly distributed in the Equatorial East181

Pacific and Equatorial Atlantic oceans, with a low occurrence probability. However, from 1982 to 2019,182

the isolated nodes with higher occurrence probabilities can appear almost everywhere in the equatorial183

regions such that the total number of communities increase. The occurrence probability of isolated184

nodes in the last 38 years is not only higher than the first 33 years but also covers a larger area than the185

first 33 years. As global warming progresses, the isolated nodes in the equatorial region are increasing,186

leading to changes in the climate network structure where the nodes are less connected to each other,187

resulting in more independent communities with smaller community sizes.188

To gain a deeper understanding and verify how the isolation in climate networks is amplified in189

the Equatorial regions, we select three nodes with the highest frequency of isolation in three regions:190

the Indian Ocean, the Pacific Ocean, and the Atlantic Ocean, respectively. We study the relationships191

between the three nodes and other nodes across the climate network structure. Specifically, we192

calculate the probability of the selected node and each of other 725 nodes belonging to the same193

community for time periods 1949-1981 and 1982-2019, and compute the difference the two time194

periods. This probability can reflect which important region responds to the amplified isolation of the195

selected node.196

In Figure 3(a), for 1949-1981, the selected Indian Ocean node exhibits high probability with197

surrounding nodes belonging to the same community. However, for the 1982-2019 in Figure 3(b), this198

probability is weakened, particularly in their association with the oceanic regions. the difference of the199

probability between 1982-2019 and 1949-1981 is shown in Figure 3(c). Blue (red) points in Figure 3(c)200

represent the decreased (increased) probability with time. In general, most areas have decreased201

probability. Still, some areas i.e., the Eurasian and North Africa continent have increased probability to202

https://doi.org/10.5194/egusphere-2023-2751
Preprint. Discussion started: 27 November 2023
c© Author(s) 2023. CC BY 4.0 License.



11

connect to the selected Indian Ocean node.203

With global warming, the probabilities of the nodes in the Pacific and the equatorial Pacific region204

belonging to the same community are noticeably diminished (as shown in Figure 4). Examining the205

probability map of the selected Atlantic Ocean node and other global nodes belonging to the same206

community in Figure 5, it is observed a similar behavior. The selected three high-frequency isolated207

nodes are surrounded by relatively strong connectivity regions during the first 33 years. However, these208

regions experience varying degrees of weakening in connectivity during the subsequent 38 years. It is209

worth noting that with global warming, the connectivity between high-frequency isolated nodes in the210

Indian Ocean, Atlantic Ocean, and Pacific Ocean with global oceanic regions is diminishing, especially211

the strength of their connections with their respective oceanic regions significantly decreasing.212

However, the association with the Eurasian and North Africa continent is strengthening. The research213

indicates that widespread changes in surface temperature persistence under climate change, this change214

is usually robust in the ocean. Averaged model results suggest a weakening of persistence in tropical215

regions[40]. Moreover, as global warming advances, ocean stratification intensifies, the mixed layer216

depth diminishes, and ocean memory and oceanic persistence weakens[41]. As global warming217

continues to reshape ocean temperatures and melt ice sheets, the influx of melted ice introduces a218

substantial volume of freshwater into the ocean. This infusion of freshwater diminishes ocean salinity219

gradients, consequently weakening ocean currents[42-44]. Therefore, there are fewer nodes associated220

with tropical oceans and their internal dynamics, while isolated nodes increase. Furthermore, climate221

change also modifies large-scale circulation patterns, and intensifies ocean-atmosphere interactions,222

land-atmosphere interactions, thereby strengthening the linkage between equatorial regions and the223

continent.224
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225

226

Figure 3: Probability maps of the Indian Ocean node and other global nodes belonging to the same227

community for (a) 1949-1981, (b) 1982-2019, and (c) the difference of the probability between 1982-2019 and228

1949-1981. The symbol of cyan cross represents the selected Indian Ocean node.229

230
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Figure 4: Probability maps of the Eastern Pacific Ocean node and other global nodes belonging to the same231

community for (a) 1949-1981, (b) 1982-2019, and (c) the difference of the probability between 1982-2019 and232

1949-1981. The symbol of cyan cross represents the selected Eastern Pacific Ocean node.233

234

235

Figure 5: Probability maps of the Atlantic Ocean node and other global nodes belonging to the same236

community for (a) 1949-1981, (b) 1982-2019, and (c) the difference of the probability between 1982-2019 and237

1949-1981. The symbol of cyan cross represents the selected Atlantic Ocean node.238

239

5 Conclusions240

In this investigation, we constructed a climate network using near-surface air temperature data241

spanning from 1949 to 2019. Our aim was to examine the evolution of climate network topology within242

the context of global warming. To explore how global warming affects the structure of the global243

climate network, we applied the Louvain community detection algorithm. Our overarching goal was to244
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enhance our comprehension of climate change and contribute to the formulation of strategies to245

mitigate its impacts.246

Notably, we observed that the network modularity between 1949 and 1981 remained below the247

overall average, whereas between 1982 and 2019, it exceeded the overall average. Concurrently, the248

trend in the number of communities from 1949 to 2019 followed a similar pattern to that of modularity.249

Conversely, the trend in average community size exhibited an opposite pattern to that of modularity250

and community quantity. Specifically, the average community size consistently exceeded the average251

during the initial 33 years but predominantly fell below the average in the subsequent 38 years.252

Furthermore, the correlation coefficient between modularity and the number of isolated nodes was253

found to be 0.674. Additionally, the correlation between the number of isolated nodes and the number254

of communities reached 0.929, both of which demonstrated statistical significance. Furthermore, we255

noted a substantial increase in the number of isolated nodes after 1982. Hence, the shift in modularity,256

the number of communities, and average community size in 1982 are significantly associated with the257

notable surge in the number of isolated nodes.258

As global warming continues, the prevalence of isolated nodes is on the rise. Between 1949 and259

1981, isolated nodes were sporadic and dispersed, mainly concentrated in the equatorial Pacific and260

equatorial Atlantic regions. However, from 1982 to 2019, isolated nodes were pervasive across the261

entire equatorial oceanic region. We further examined the relationship between temperature network262

structure and isolated nodes in the context of global warming. By selecting key nodes with the highest263

frequency of isolation in the equatorial Pacific, equatorial Atlantic, and equatorial Indian Ocean264

regions, we investigated their likelihood of belonging to the same community as other nodes during265

1949-1981 and 1982-2019. Our findings indicate that, amidst global warming, the connectivity of266
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highly isolated nodes along the equator is diminishing, particularly concerning their associations with267

neighboring regions within the same oceanic basin, while their connections with certain continents268

have significantly strengthened.269

270
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